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1. Introduction

In many applications, nonlinear equilibrium problems typically involve a

number of intrinsic parameters. Hence the resulting equations have the generic

form

I (.1)H(y,t) - y op

where y and t vary in some state space Y and parameter space T, respectively,

and H is a given mapping with domain in Y x T and range in Y. In general,

the set of all solutions (y,t) of (1.1) forms a manifold in Y x T and interest

centers on analyzing the characteristic features of this equilibrium manifold.

Usually, the parameter space T has finite dimension, but the state space Y

is infinite-dimensional. Thus for a computational analysis, finite-dimensional

approximations of (1.1) have to be introduced, and then methods are required for

determining the features of the solution manifold of the approximating finite-

dimensional system of parametrized equations. At this time, the principal component

of such methods always is a general form of continuation process for the trace of

paths on the manifold. In addition, special procedures are available for detecting

and determining specific features along these paths. The literature in this area

is extensive, but there is no need to give specific citations since no use of them

will be made. It should be noted, however, that there are only few studies about

1) This work was supported in part by the U.S. Air Force Office of Scientific
Research under Grant 80-0176 and the Office of Naval Research under Contract
N-0014-80-C-0455.

2) Department of Mathematics and Statistics, University of Pittsburgh, Pittsburgh,
PA 15261.
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the integrated use of these various techniques for a thorough analysis of equi-

librium manifolds.

The need for introducing finite-dimensional approximations of the equations

(1.1) leads to further questions about the relation between the features of the

solution manifolds of the original and the discretized equations and the errors

introduced by the approximation. Relatively little has been done so far in this

area, and, in fact, the series of articles [3], [5] appears to be the only one

*which addresses the a priori estimation of the errors in the case of a one-

dimensional parameter space, and in [1] some a posteriori estimates of these errors

are introduced for certain boundary-value problems in one space dimension.

In this paper, we outline some techniques for ensuring the existence of so-

lution paths of a rather general class of nonlinear equations, as well as of their

finite-dimensional approximations, and for assessing the error between these paths.

A tool in this analysis is the theory of nonlinear Fredholm operators. The dis-

cussion of the operator discretizations involve a specific uniformity condition

which represents a restriction of the class of operators used. The implication of

this condition is the subject of ongoing research. But we show here that the results

apply directly to mildly nonlinear elliptic boundary value problems of the type

considered in [3], [5]. At the same time, it appears that they cover much more

general classes of operators as well.

2. Solution Manifolds of Nonlinear Fredholm Operators

Throughout this paper the following information is assumed to be given: ,0

(i) two real Banach spaces X,Y; e t -

(2.1) (ii) an open subset W of X;

(iii) a mapping F: W CX Y of class C (W), r 1. > 1.

We are interested in examining the solution set of the equation -.

(2.2) F(x) Yo x C W, .

k L . .....
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I with a fixed y 0 F(W). For this purpose, suppose that for some m > 1 the

m-regularity set

(2.3) R m(F) = {x c W: dim ker DF(x) = m, rge DF(x) = Y}

of F is nonempty. Then the restriction of F to R (F) is a nonlinear Fredholm

operator of index m (see eg. [2]). Our analysis of (2.1) centers on this fact.

In [41 it was shown that in the case m = 1 the set RI(F) is open if it is

not empty. A slight modification of the proof given there shows that if R (F) #m

j for some m > 1 then again the set is open.

For any x 0 R(F) there exist closed subspaces V C X such that0

X = V S ker DF(x ). For any such choice of V the restriction DF(x 0 )IV is an

isomorphism between V and Y and the inverse

(2.4) AV = (DF(x o)IV)-' 1 L(Y,V)

is a right inverse of DF(x ) on Y. With this the equation (2.2) may be written

in the form

(2.5) F(t + Avy) = yo, y e Y, t c ker DF(xo), t + AVy e W,

which corresponds to (1.1) with Y as the state space and TO = ker DF(x ) as the

m-dimensional parameter space.

The basic result about the solution set of (2.2).may now be phrased as follows:

Theorem 2.1: Suppose that (2.1) is given and that R m(F) is nonempty for some

m >1. Then for any fixed y 0 F(W) the regular solution set F(-l (yo ) R m(F)

rof (2.2) is a nonempty, open, m-dimensional C -manifold in X.

The proof is standard (see eg. a finite-dimensional analog given in [8],

p. 11).

As mentioned in the introduction, the computational procedures for analyzing

I



4

I the solution manifold of (2.2) consist principally of methods for approximating

paths on that manifold. Such a path is defined as the solution manifold of some

reduced equation defined by a Fredholm operator of index 1 on its regularity set.

Thus without restriction of the generality we may assume that (2.1) is given and

R1(F) is not empty. For ease of notation, we shall write M(y ) - F (yo) 0) R (F)

r
for the open, one-dimensional C -manifold constituting the regular solution set

of (2.2).

We consider first the question of the choice of suitable local parametrizations

of M(yo). It turns out that a possible choice corresponds to a typical approach

used in continuation procedures.

0

• " M(yo

/ x +
0

In line with the earlier discussion leading to (2.5), a local parametrization

of M(yo) at a given point x c M(y ) is defined as a triple {V,A,z } con-

sisting of a closed subspace V of X, a linear map A E L(Y,V), and a point

z c X such that
0

(i) ker DF(x ) n V = {0};
0

(ii) A is an isomorphism from Y onto V;
(2.6)

(iii) z V V;
(iv) X-0V To, T - span {z 0.

As indicated in Figure 1, we consider the family of parallel linear manifolds

(2.7) x + tz + V, t e .



I
The conditions (2.6) ensure that these manifolds are transversal to ker DF(x )

and hence that locally near t - 0 the solution manifold may be parametrized

in terms of t. This is the content of the following result:

Theorem 2.2: Suppose that (2.1) is given and Rl(F) # *. Moreover, let {V,A,z}

be a local parametrization of M(y ) at the point x e M(yo). Then there exists

an open interval J C IR , 0 e J, an open neighborhood U C X of x, and a

unique cr-map n: J - Y such that

(2.8) M(y) n U = {x e X: x x + tz + An(t), t e J}.
00 0

The proof follows from an application of the inverse function theorem and

the use of the conditions (2.6).

In the standard continuation method, z defines the predictor-line and the

corrector produces the step An(t) from the predicted point x + tz to the

point x + tz + An(t) on M(y ).

At any point x e M(y ) choose a nonzero vector Zo E ker DF(x ). Then,

as noted earlier, there exist closed subspaces V C X such that X - V.( ker DF(x ).

With any such V and the associated mapping (2.4), the triple {V,Avz 0 } is a

local parametrization of M(yo) at xo . In the setting of continuation methods,

these parametrizations correspond, in essence, to the pseudo-arclength parametrizations

(see eg. [61).

The question now arises how far a local parametrization may be extended. For

this, note that the set

(2.9) A - {x c U: DF(x)A is an isomorphism of Y onto itself)

is certainly nonempty and open. With this a generalization of a result in [7]

may be phrased as follows:

Theorem 2.3: Under the conditions of Theorem 2.2, let MC X be the maximal con-
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nected subset of M(y) n A which contains x. Then there exists an open in-

terval J 0 , 0 Jo and a Cr-map n : 1 0 Y such that

(2.10) M = {x e X: x = x + tz + An (t), t C J }.

The condition that, for x e Mot the map DF(x)A is an isomorphism of Y

means geometrically that our local parametrization is valid for the segment of

the solution path between the points x_ and x+ closest to xo, where x_ + V

and x+ + V are tangent to the path. In standard terminology these are the closest

limit points of the path with respect to the direction z0

T0

X+

M(yO Figure 2

0!

0 +x +

3. Finite-Dimensional Approximations

As before, suppose that the information (2.1) is given and that RI(F) # 4.

We turn now to the formulation of suitable approximate problems for (2.2). In many

applications, we have X - Y x]R; that is, a particular component of X is identified

as a basic parameter. Then only the complementary component Y has to be approxi-

mated. It is useful to generalize this by assuming that a splitting

(3.1) X - Z T, dim T 1

has been given together with a mapping

j (3.2) Q c L(X,Y), QIZ: Z - Y an isomorphism
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which relates Z with Y. Now a family {Zh} of finite-dimensional subspaces of

Z, parametrized by some index h > 0, is assumed to be given and we set

(3.3) X = Zh e T, Yh = QZh"

Moreover, let Ph: Y + Yh' h > 0, be a family of projections such that

(3.4) lim IPhy - yj = 0, any y e Y.

h+O

With this our approximate problem is now specified by the equations

(3.5) Fh(x) Yoh' x ' h, Yoh = Phyo'

where

(3.6) Fh: Wh C Xh Yh, Fh(x) = PhF(x), x e Wh =W n .

For ease of discussion, we call the information given in (3.1)-(3.6) a basic approxi-

mation of our problem (2.2).

As before, let M(y) = F(-l)(y ) n RI (F) be the solution manifold of the

original problem. Our question is then whether the solution manifolds of the dis-

cretizations (3.5) approximate M(yo) when h tends to zero. For this analysis,

we extend the discrete operators (3.6) to all of W c X as follows:

(3.7) Fh: W - Y, Fh(x) = (I-Ph)Qx + Ph(F(x)-yo), x E W.

Clearly, Fh is of class Cr(w) for h > 0 and the following properties can be
h

shown to hold:

(i) Fh(x) = 0 if and only if x e Xh and Fh(X) = Yoh;

(ii) DFh()Xh C Yh;

(3.8) (iii) ker DFh(x) = ;

j (iv) DFh(x) c L(X,Y) is a Fredholm operator of index 1;

(v) PhDF(x)Xh = Yh implies that x c RI(Fh.

... .. ... .. .. .I ... " : , "
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Any comparison of the solution manifolds of (2.2) and (3.5) has to be done

locally. Hence, let x e M(yo) be given and suppose that {V,A,z} is a local

parametrization of the manifold at x . Clearly, this parametrization has to relate
0

in a suitable way to the basic discretization introduced above. This relationship

may be expressed in various forms. For the sake of brevity, we shall not go into

details but assume here simply the technical condition

(3.9) IIDFh(x )AyJJ > yjllyl, y E Y, h e (O,h ),

where Y > 0 is independent of y and h, and h > 0 is sufficiently small. From

(3.9) it follows that

(3.10) PhDF(xo)Xh Yh

for h c (O,ho) and hence, by (3.8)(v), that x e Rl(Fh).

The condition (3.9) may be enforced in many ways. For example, if we are prepared

to restrict the discretization and parametrization by the choice V = Z, A = AV, and

Q = A Qz, where QZ e L(X,Z) is the natural projection corresponding to the splitting

(3.1), then DFh(xo)A is the identity on Y and (3.9) holds with y = 1 for any h > 0.

On the other hand, as noted earlier, in many applications we have Z = Y, in which case

we want to use V = Z, A = I, and Q = QZ' and (3.9) turns out to be a condition on F.

One such case will be discussed in the next section.

Let Ao: Y - X be the affine mapping Aoy = x + Ay, y e Y, and define

Hh: A- 1 W = Y - Y by h(y) = Fh(Aoy), y e A(-IW. Then, for h c (O,h ), the con-

dition (3.9) implies that D%(O) c L(Y) is an isomorphism and fjDHh(0)-II I -l
By the uniform boundedness principle, the projections Ph are uniformly bounded for

h > 0. Using this fact, we may show that there exists a 6 > 0, independent of h,

such that

(3.11) IIDH(y) - DH (O)II y whenever IlYj1 < 6.

I
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This permits the application of the inverse function theorem. As noted in [3], the

standard proof of that theorem permits the derivation of a Lipschitz estimate for

the inverse function. Using a slight extension of the result in [3], we obtain here

rthe existence of a unique C -function

(3.12) Gh:U B (w 6) a Y B(,6) C Y, W = (IPh)Qxo,1 = B(Whoh' 2 7 (,)=Y oh

such that

(3.13) Hh ( y, e Uh

and

(3.14) JIGh(yl) - Gh(Y2 )Li1 -Ilyl-Y211, yV,y2 E Uh.

Since 6,y are independent of h and IIW hII + 0 as h - 0, it follows that there

exists some hI c (0,ho) such that 0 e Uh for h e (0,hl). Hence, Yh = Gh(O)

solves Hh(0) = 0, and from (3.14) we obtain that IIYh'' , (2/y)lIwoh'l for

h e (0,h1). Moreover, we can show that the corresponding points xoh + x + AyhcX

satisfy xoh e Xh and solve the approximate problem (3.5). Finally, it follows from

(3.9) that xoh E R1(Fh) and ker DFh(xoh) n Vh = {0}.

With this we have the following result:

Theorem 3.1: Let (2.1) be given and R (F) # 4. Moreover, suppose that a basic

approximation (3.1)-(3.6) has been chosen and that {V,A,zo }  is a local parametrization

of M(y0 ) at x C M(yo) such that (3.9) is satisfied. Then, for all sufficiently

small h > 0, the approximate problem (3.5) has a solution xoh such that xoh RI (F h )

and lim xoh = X0. Furthermore, for any Zoh e X, Zoh Vh = V n x, it follows

that fVhPhDF(Xo)IVhZoh} is a local parametrization of the solution manifold

F (Yo) n R (Fh) of (3.5) and hence Theorems 2.2 and 2.3 apply.h oh Ih

This result provides the existence of a local segment of the solution path of

I
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7the local approximate problem (3.5) under the same general conditions needed for

establishing the existence of the solution curve of the full problem (2.2). However,

if error estimates are desired, then additional smoothness conditions are needed for

F. More specifically, the following extension of Theorem 3.1 can be proved:

Theorem 3.2: Suppose that the conditions of Theorem 3.1 hold and, in addition,

that DF: W - L(X,Y) is Lipschitz continuous on bounded subsets of W. By Theorem

2.2, the original problem (2.2) has a solution segment x: J=]R + W defined on an

open interval J = i, 0 e J. Then there exists a compact subinterval J 0 J,0

0 C J09 such that, for sufficiently small h > 0, the local approximate problem (3.5)

has a solution segment xh: J 0 Wh and

(3.15) 11x (t) - Xh(t)11 < CII(I-Ph)Qx(t)II, t C Jot

with a constant C > 0 which does not depend on h > 0 or t c J 00

The proof uses a particular representation of the two solution curves and is

based on a globalized form of the implicit function theorem given in [3].

4. Mildly Nonlinear Operators

As an example, we apply our results to the mildly nonlinear operators considered

in [3]. In line with the comments in the previous section about the condition (3.9),

suppose that X = Y x IR and denote by Q c L(X,Y) the natural projection corresponding

to this splitting. Let X be another Banach space, K e L(X,Y) a compact operator,

and G: X X a given nonlinear mapping of class Cr , r > 1. With this we assume

that our problem (2.2) involves the operator F: X- Y defined by F(x) = Qx + KG(x),

x c X. With the notation x - (y,X), y C Y, X EIR, for the vectors x c X, the

problem can then be written in the familiar form

(4.1) y + KG(y,X) = yo.

As in Section 3, we introduce a basic approximation. Then it can be shown that



for any loLal parametrization {V,A,zo0 of M(yo) at x °  M(y)0 the condition

(3.9) holds for all sufficiently small h > 0. Hence, for mildly nonlinear operators,

our basic assumptions are generally satisfied, and therefore Theorems 3.1 and 3.2

apply.

It may be interesting to see what type of local parametrizations correspond to

the cases of nonsingular points and limit points considered in the first two parts of

[3]. A point x° = (yoXo) e X is nonsingular if DyF(x) = I + KD yG(x 0 ) is an

isomorphism of Y onto itself. Hence, in this case, it follows that for any

x RI(F) we have Y Aker DF(x 0 {01, whence for a local parametrization we may

choose V = Y, A the identity on Y, and z = (0,1), the X-direction. This corres-

ponds to the choice in the first part of [3]. Clearly, our results apply.

A point xo = (yoA ) e X is a limit point if Dy F(x ) has a one-dimensional

null space in Y and DAF(xo ) i rge DyF(xo). For x 0 RI(F), this is equivalent

with ker DF(x ) = Y. Let u e Y be such that D yF(x )u = 0, Iju[l = 1. Then

ker DF(xo) is spanned by (u,O) c X and we have Y = rge DyF(x) span (u), and

D yF(x ) is an isomorphism of Y, = rge D yF(x ) onto itself. It now follows that,

for x £ R 1(F), we may introduce a local parametrization with V = YI x R, Zo = (u,0),

and, for instance, the isomorphism A e L(Y,V) specified by Ay = (Y1 ,tl), where

y = yl + t1uI y1 C Y19 t1 c R. This is exactly the approach in the second part of

[3] and again our results apply.

The example discussed here is not the only one to which our results apply. More

about this will be presented elsewhere.
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